zurück

Artificial Intelligence (AI) for Plant Talk: Connecting Plant Cell2cell Communication to Growth

Beschreibung

Are you curious about how plants communicate and how artificial intelligence can help us understand it?

Join this hands-on interdisciplinary project that combines plant biology, image processing, and machine learning to explore how cells connect and influence plant growth!

No prior coding experience is required — the project is designed for both beginners and advanced students.

------------------------------------------------------------------

Project Overview:

Unlike animal cells, plant cells have rigid cell walls that give them defined shapes, form tissues, and protect against stresses such as insect bites, fungal invasion, or heat.

Yet, plants still need to transmit signals between cells — a process called cell-to-cell (Cell2Cell) communication.

Over millions of years, plants have evolved microscopic channels known as plasmodesmata that pass through their cell walls, allowing neighboring cells to exchange signals and molecules directly.

In this project, we will investigate how cell-to-cell communication relates to plant growth, focusing on rosette leaf development in Arabidopsis.

We already have datasets that include:

(a) Time-lapse images of leaf growth (fitness)

(b) Callose abundance (a key cell wall component) across various Arabidopsis mutants

(c) Cell-to-cell permeability measurements

Now it’s time to turn these data into insight using AI and machine learning — to analyze, predict, and visualize how communication between cells affects growth across different genotypes.

----------------------------------------------------------------------

What You’ll Do: 

Use ImageJ or other image segmentation tools to extract leaf area from time-lapse images

Organize growth and communication data into a structured dataset

Train machine learning models to classify phenotypes with defective cell-to-cell communication

Build a predictive model using biological data from additional Arabidopsis mutants

Projektzeitraum
Wintersemester 2025/2026 und Sommersemester 2026
Bewerbungszeitraum
13. bis 27.10.2025
Durchführung
nach Absprache
Details zu Projektzeitraum und Durchführung

wir sind sehr flexibel mit diesem Projekt und können uns gerne nach dem Stundenplan der Interessenten richten.

Studienfach
offen für alle Studienfächer
Betreuende
Dr. Lin Xi, Prof. Dr. Waltraud Schulze
Institut
Institut für Biologie (190) (Systembiologie der Pflanze 190D)
Sprache
englisch
Teilnehmendenanzahl
min. 1, max. 2
Arbeitsaufwand
ca. 120 Stunden pro Teilnehmende:r | 4 ECTS-Punkte

Arbeitsaufwand (Stunden und ggf. ECTS) sind ungefähre Angaben. Die tatsächlich vergebenen ECTS-Punkte ergeben sich aus der tatsächlich geleisteten Arbeit.

 
Für dieses Projekt ist ein Motivationsschreiben des Studierenden erforderlich
Projektart
theoretisch/nicht experimentell
Lernziele

Die Teilnehmende lernen in diesem Projekt:

  1. Core skills in image processing and computer vision
  2. Applying ML(machine learning) techniques to different types of biological data
  3. Understanding plant phenotype quantitative analysis
  4. Cross-disciplinary problem-solving in biology and data science
Anmerkungen für Studierende
Dokument
Schlagworte
Pflanzen, Methoden, Datenanalyse (deskriptive Auswertung